

A Technique for Demonstrating Safety and Correctness of Program Translators : Strategy and Case Study

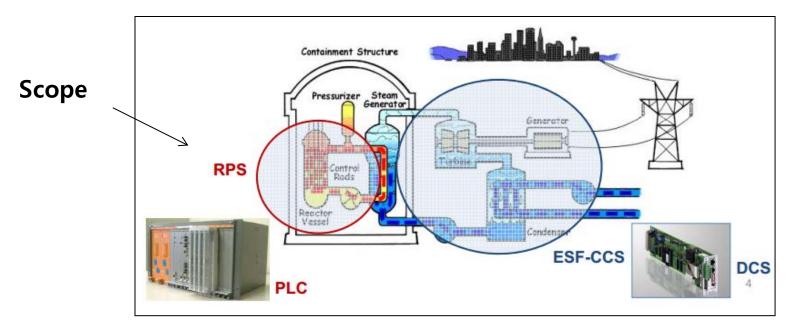
Eui-Sub Kim , Junbeom Yoo

Dependable Software Laboratory KONKUK University, Republic of Korea

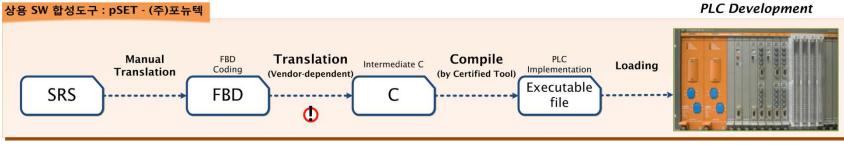
Jong-Gyun Choi , Young Jun Lee , Jang-Soo Lee Man-Machine Interface System Laboratory Korea Atomic Energy Research Institute, Republic of Korea

2014-11-05

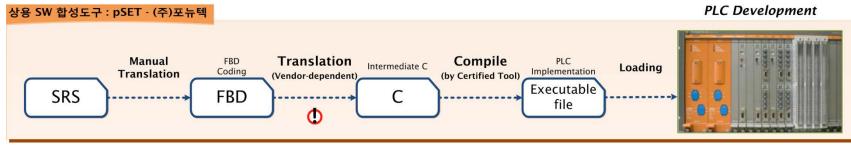
Contents


- 1. Introduction
- 2. The Demonstration Strategy
 - 1. Safety demonstration
 - 2. Correctness demonstration
- 3. The Development of Supporting Tools
 - 1. FBDtoCadenceSMV
 - 2. Scenario Generator
 - 3. FBD Simulator
 - 4. FBD-Verilog Comparator
- 4. Case Study
 - 1. The Safety Demonstration
 - 2. The Correctness Demonstration
- 5. Conclusion and Future Work

1. INTRODUCTION



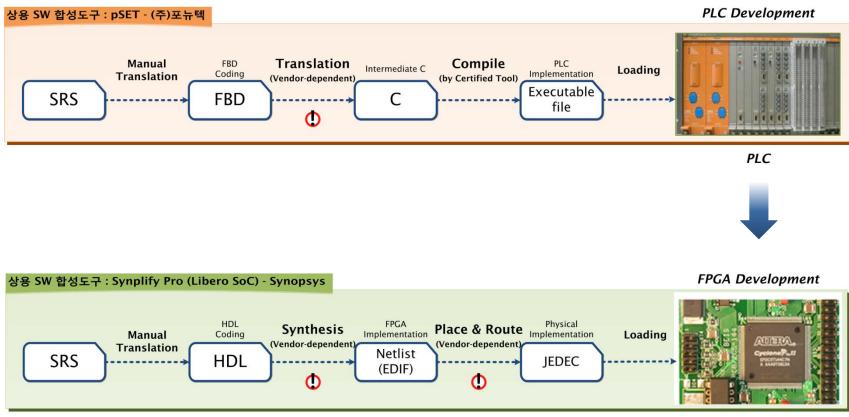
- Strategy and Case Study
 - A specific translator : FBDtoVerilog
 - Case Study : <u>BP</u> (Bistable Process) of RPS (Reactor Protection system) in Nuclear Power Plants
 - It produce the <u>'Shutdown' signal</u> to protect a NPP from unwanted situation.


An overview of Nuclear Power Plants.

• Software Development Process based on PLC

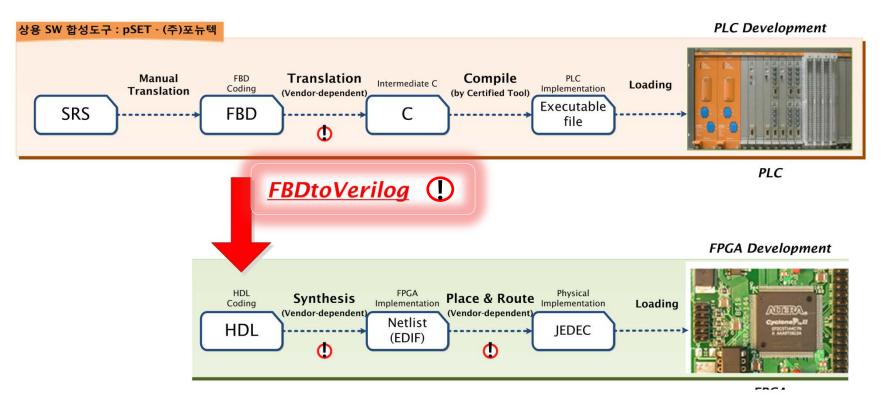
Software Development Process based on PLC

Recently, there are trend to replace the platform from PLC to FPGA

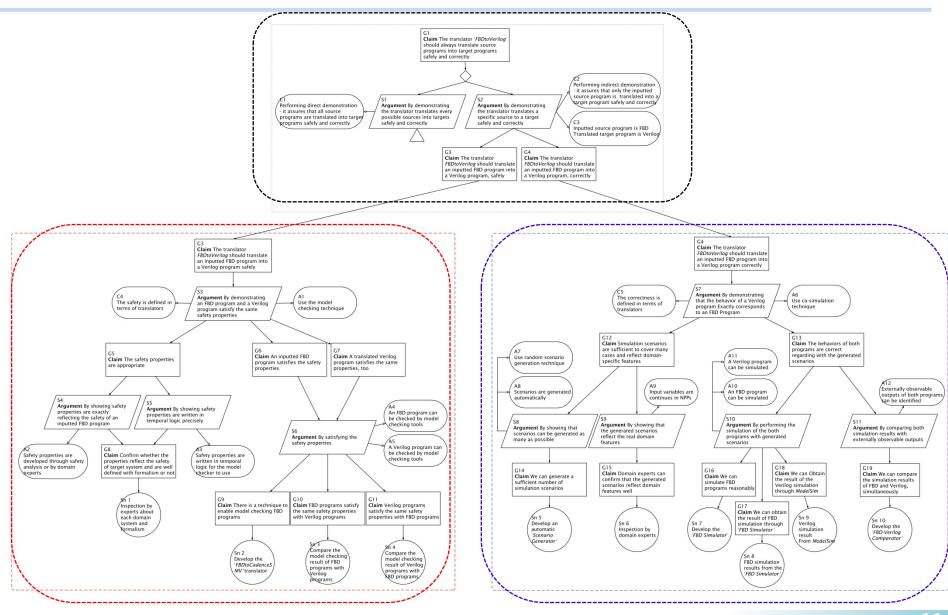

FPGA

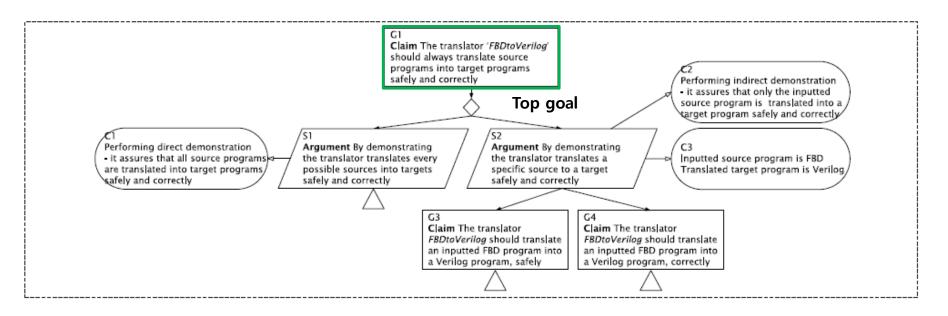
PLC vs. FPGA

- There have differences in stage of software development process


- We developed the **FBDtoVerilog** translator
 - It <u>automatically</u> translates an FBD to a Verilog program

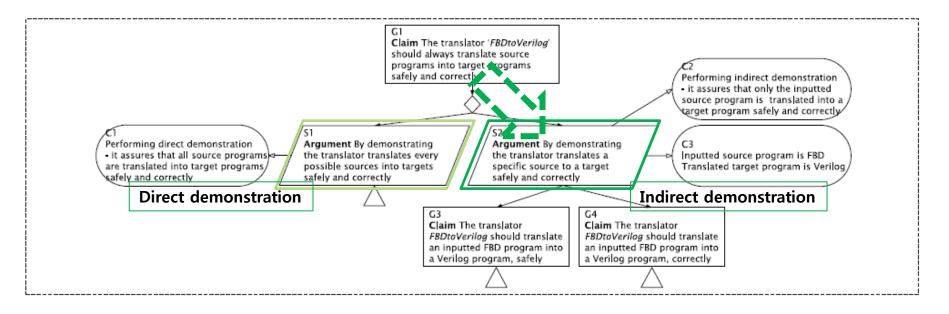
- We developed the **FBDtoVerilog** translator
 - It <u>automatically</u> translates an FBD to a Verilog program


 \bigcirc We must prove that the translator will work out correctly and safely

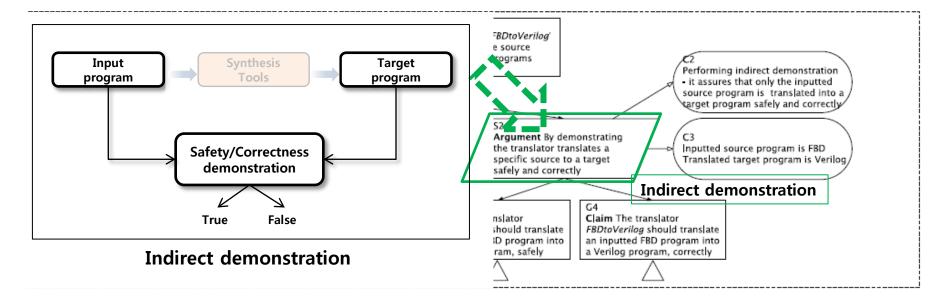


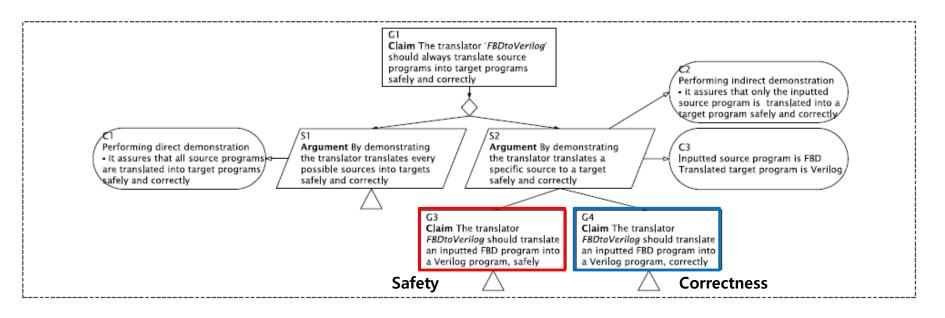
2. Correctness Demonstration Strategy

2. A DEMONSTRATION STRATEGY



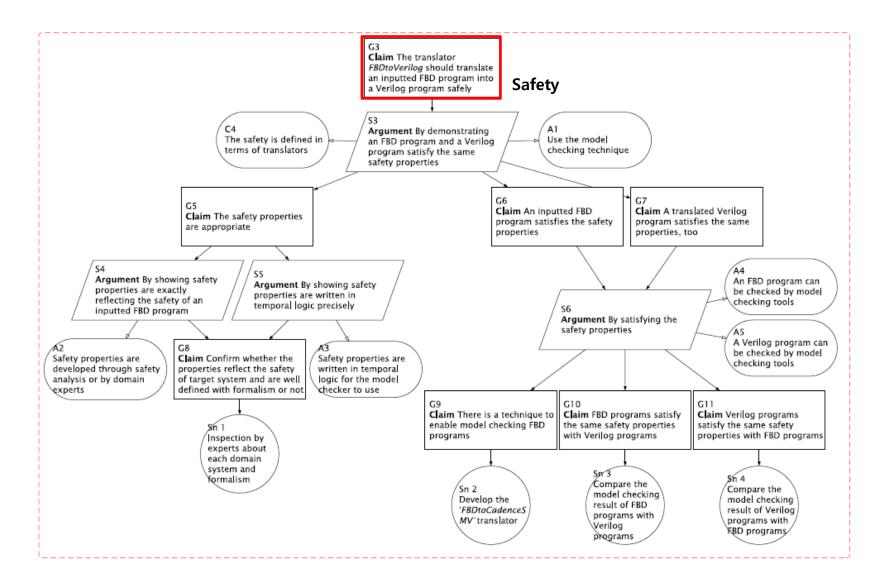
 Top goal : The translator 'FBDtoVerilog' should always translate source programs into target programs safely and correctly. KU KONKUK


DEPENDABLE SOFTWARE

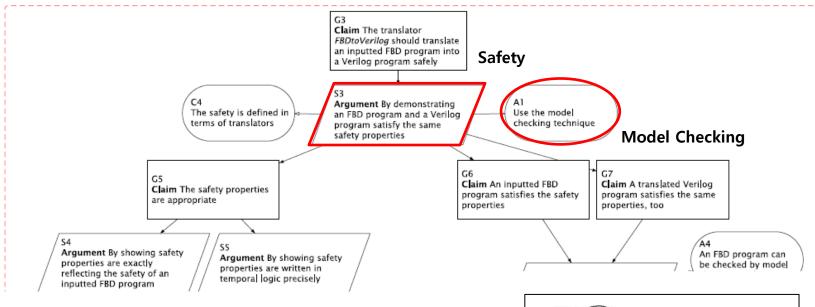


- Direct demonstration approach
- Indirect demonstration approach

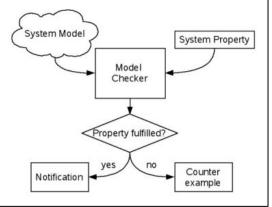
- Direct demonstration approach
- Indirect demonstration approach

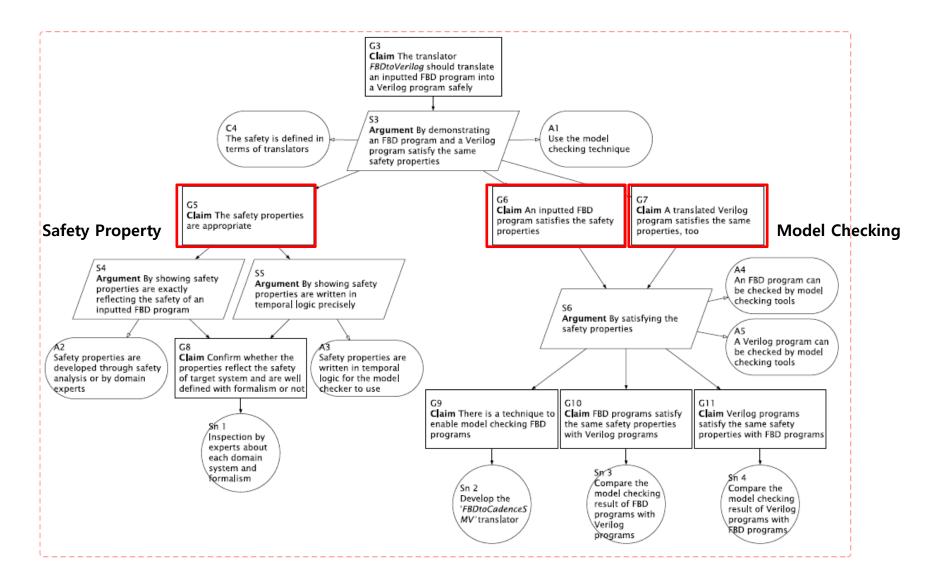


- Safety
 - Definition : A translator is safe, if safety properties are satisfied with the input and output programs simultaneously.
- Correctness
 - Definition : A translator is correct, if the behavior of a translated program is the same with its source program for all possible input scenarios.

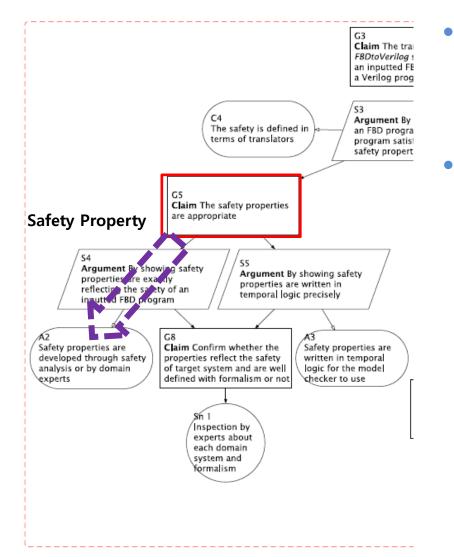

KU KONKUK

DEPENDABLE SOFTWARE

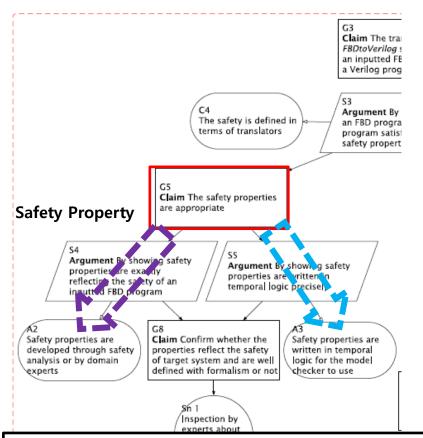



Model Checking

- Given a model of a system, exhaustively and automatically check whether this model meets a given specification.
- We used a model checking tool CadenceSMV



A typical model checking work-flow



- Goal 5
 - Claim the safety properties are appreciate
- Assumption 2
 - Safety properties are <u>reflecting</u> <u>important safety features</u> of the target input/output programs

Goal 5

 Claim the safety properties are appreciate

• Assumption 2

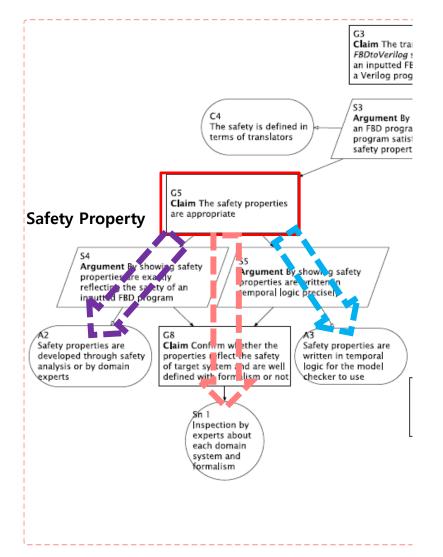
 Safety properties are <u>reflecting</u> <u>important safety features</u> of the target input/output programs

• Assumption 3

 They <u>well formed with the</u> <u>formalism</u> which the model checking technique requires

Natural requirement

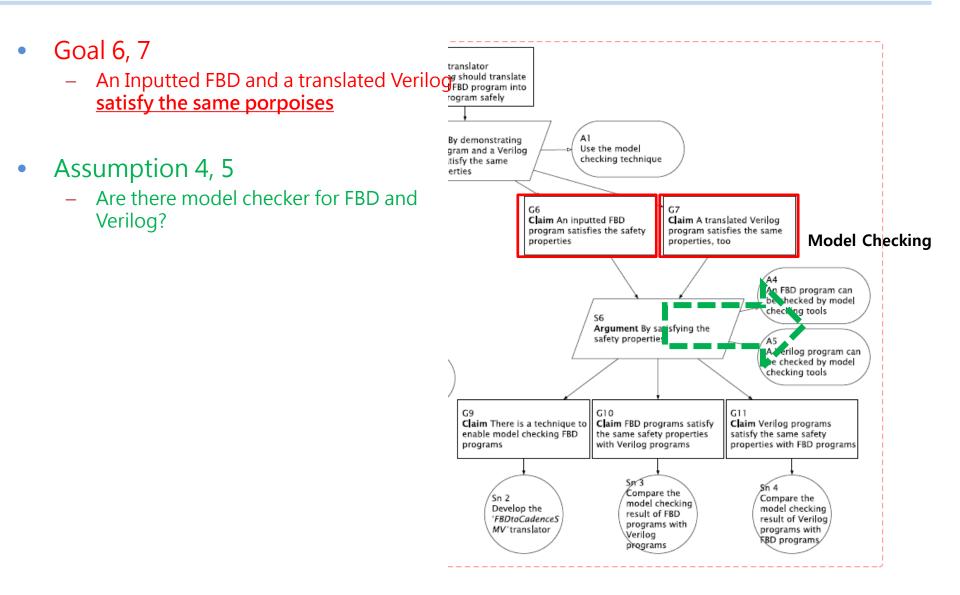
"If PV_OUT (An input sensor value) is more than the TSP (Trip Set-Point) for a predefined time, then the trip signal should be fired (TRIP_LOGIC = 1) immediately."

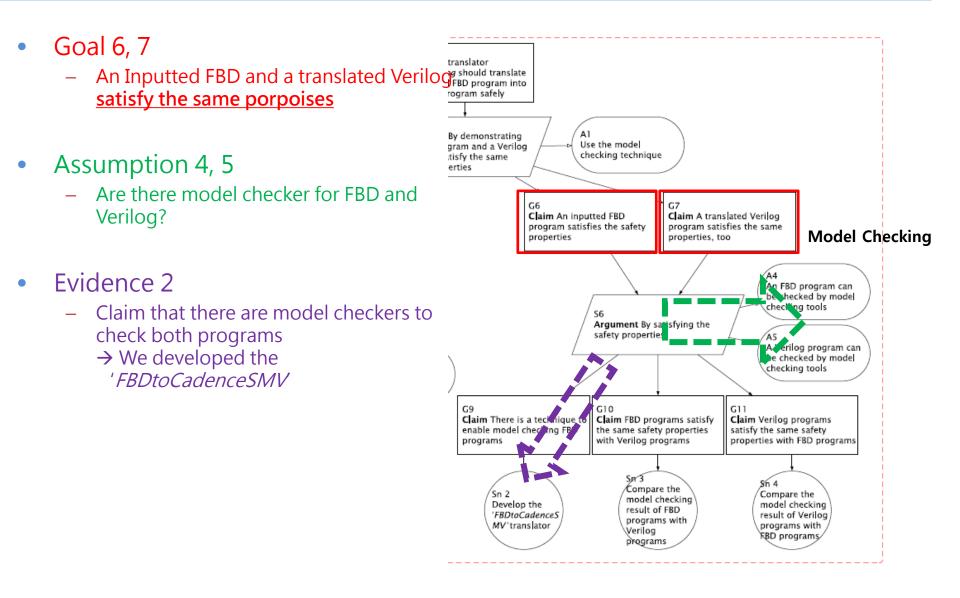

CTL formula

: AG((PV_OUT > TSP) & (TRIP_CNT > = (MAXCNT - 1)) \rightarrow AX(TRIP_LOGIC = 1))

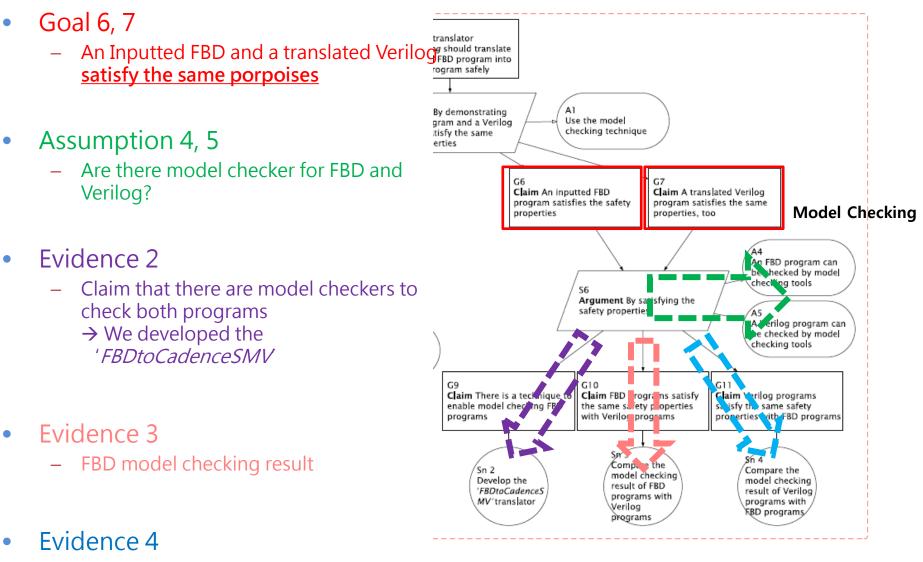
KU KONKUK

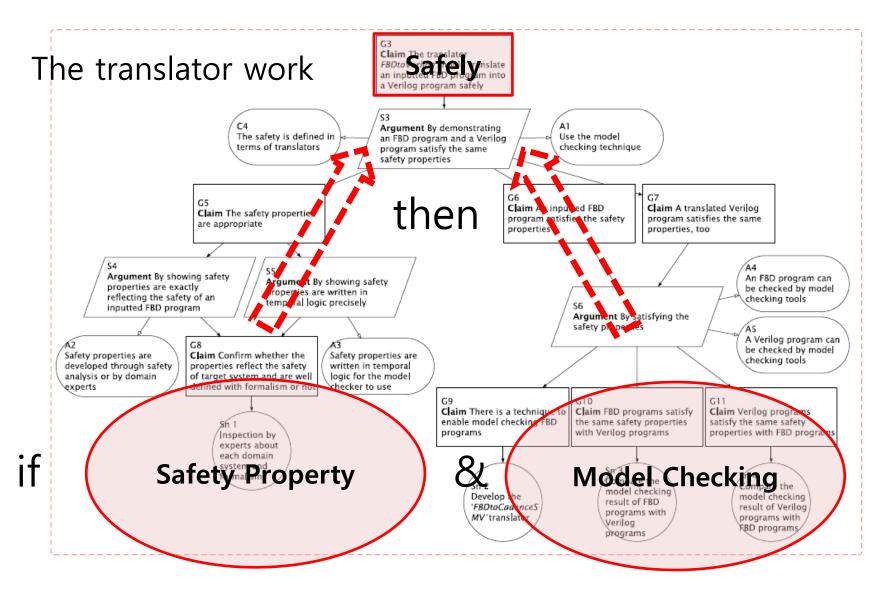
DEPENDABLE SOFTWARE

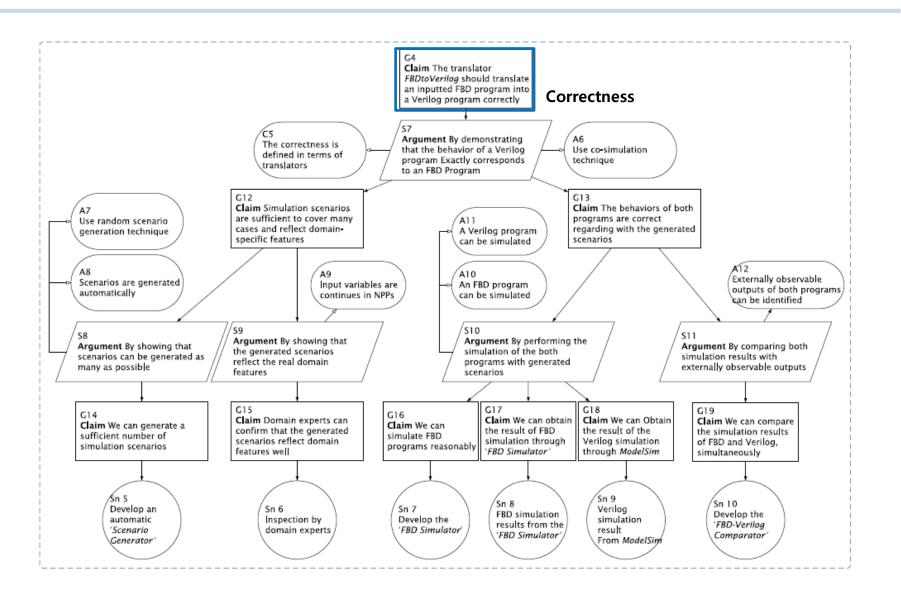


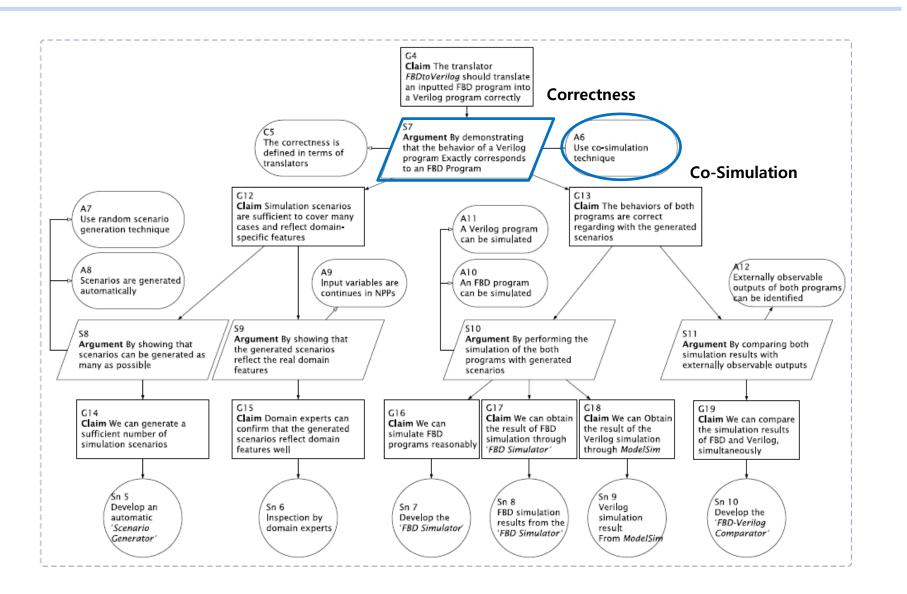

- Goal 5
 - Claim the safety properties are appreciate
- Assumption 2
 - Safety properties are <u>reflecting</u> <u>important safety features</u> of the target input/output programs
- Assumption 3
 - They <u>well formed with the</u> <u>formalism</u> which the model checking technique requires
- Evidence
 - Inspection by experts about each domain system and formalism

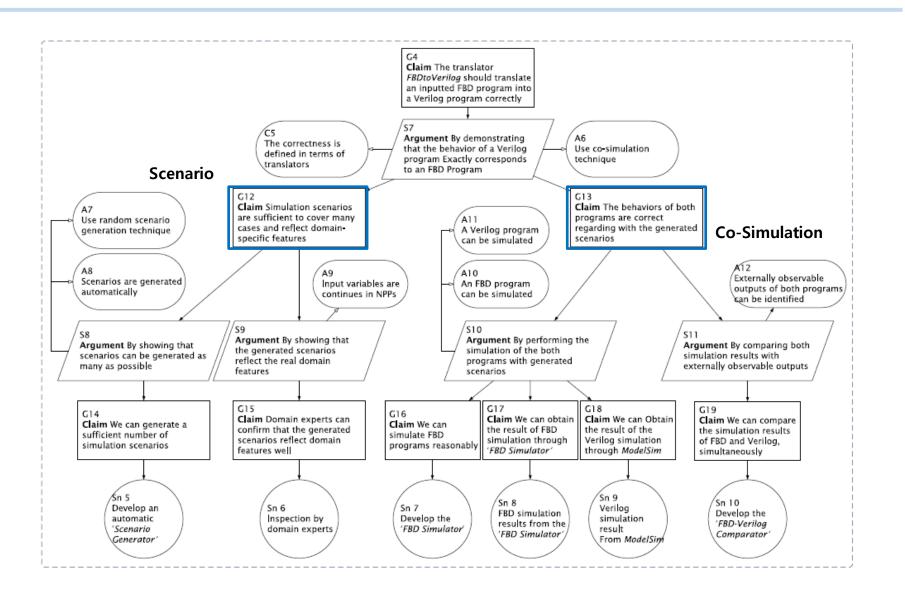
2014-11-05





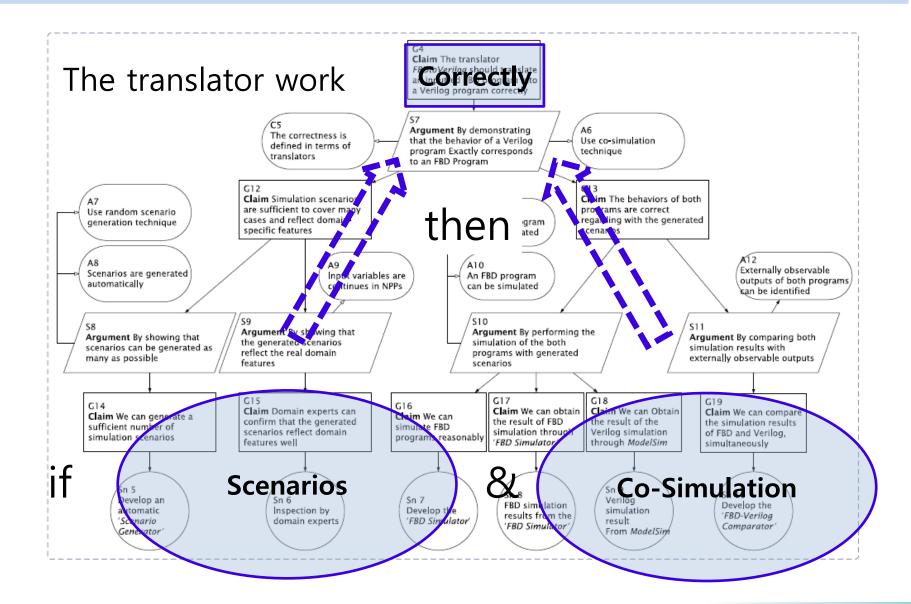



Verilog model checking result



27

KU KONKUK


DEPENDABLE SOFTWARE

LABORATORY

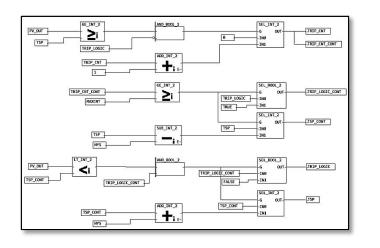
In summary

- In summary, we constructed our purpose and strategy with the GSN.
 - We first set up the top-level goal (G1) and divided it into two parts, safety (G3) and correctness (G4), then presented sub-goals, arguments and evidences to accomplish upper goals.

3. THE DEVELOPMENT OF SUPPORTING TOOLS

- 4. FBD-Verilog Comparator
- 1. FBDtoCadenceSMV

2. Scenario Generator


3. FBD Simulator

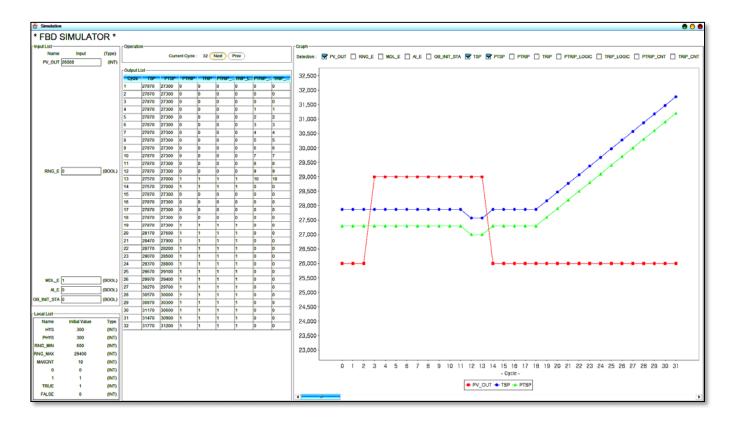
3.1 FBDtoCadenceSMV

FBD program → input program of Cadence SMV (Model checker) (Translate)

👻 Simulation	- 🗆 X
* Generate Cadence SMV Model *	
Model input	console
Input File : C:\Users\Sub\Desktop\FBD Simulator\BP.xml Open	Model Input : BP.xm Generation 중
POU List • FIX_RISING FIX_FALLING MANUAL_VSP_FALLING VPS_RISING VPS_FALLING MANUAL_FALLING vps-rising BP	Generation : C:\User
Max Cycle Max Cycle : 100	
Generation Cancel	۰ <u>۱۱</u> ۲

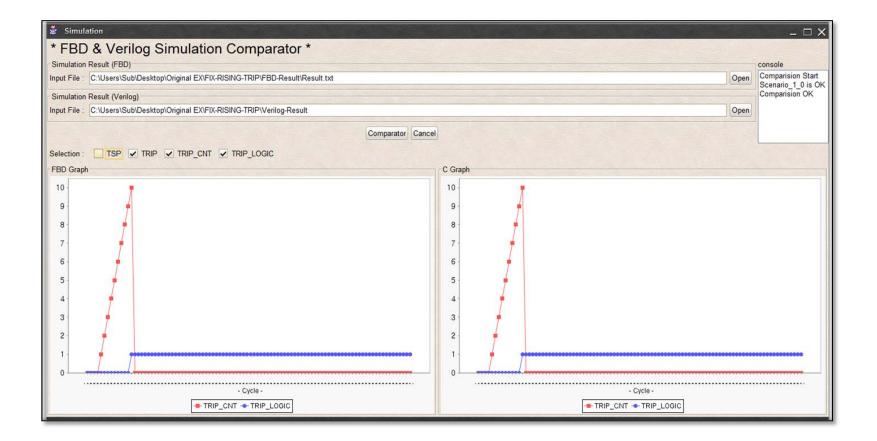
	module example (in, clk, reset, out); input in, clk, reset; output out;							
	wire in, clk, reset; reg mid1, mid2, out;							
	always @ (posedge clk or negedge reset) begin if(treset) begin mid1 <= 0; mid2 <= 0; out <= 0; end							
,	else begin mid1 <= in; mid2 <= mid1;							
	if(in==1 && mid1==1 && mid2==1) begin out <= 1; end else begin							
	out <= 0; end end							
	end endmodule							

3.2 Scenario Generator


 The 'Scenario Generator' randomly generates a number of scenarios within predefined constraints on input values.

 omnut 	lation													- 🗆 X
* Sce	enario	Gene	rator *											
Model in	put													console
Input File	e: C:\Users	s\Sub\Desktop	/\FBD Simula	itor\BP.xml	I								Open	Model Input : BP.xml Selection : FIX_RISING
POU List	it													ADD:2 ADD:3
O FIX	_RISING	FIX_FALLI	NG 🔵 MAN	NUAL_VSP	_FALLING	G 🔴 VP	S_RISIN	G 🔴 VI	PS_FALLING 🔵 MAI	NUAL_FAL	LING	🔵 vps-rising	BP	Generation Start Generation OK
Input Var	riable List-													
Scenario)	na	ame		typ	e			Initial Value	1	Rate			
1		P١	/_OUT		INT	Г			15000		10			
2		P	/_OUT		INT	г			16000		20			11
3		P	/_OUT		INT	г			17000		30			11
Cycle	e						100							
Num							100							
			ADD						Gene	eration				
			100						ound	cration				
								_						
egin														_1
egin 1_0						FB	D	initial begin	L					Veri
						FB	D	begin	L SYSCLK_PERIOD * 10))				Veri
1_0						FB	D	begin #(S	SYSCLK_PERIOD * 10) NSYSRESET = 1'b1;					Veril
						FB	D	begin #(S	SYSCLK_PERIOD * 10) NSYSRESET = 1'b1; SYSCLK_PERIOD * 10))				Veril
1_0						FB	D	begin #(5 #(5	SYSCLK_PERIOD * 10) NSYSRESET = 1'b1; SYSCLK_PERIOD * 10) NSYSRESET = 1'b0;)	= 1; F	2V_OUT = 150	000; #(SY	SCLK PERIOD (2.0) puls
1_0 begin	in					FB	D	begin #(5 #(5 #(5 #(5	SYSCLK_PERIOD * 10) NSYSRESET = 1'b1; SYSCLK_PERIOD * 10) NSYSRESET = 1'b0; SYSCLK_PERIOD * 50) SYSCLK_PERIOD * 50))) pulse :) pulse :	= 1; E	$v_{OUT} = 149$	98; #(SY	SCLK_PERIOD / 2.0) puls
1_0		15001 1499	96 15000	15000	14995	FB	D	begin #(S #(S #(S #(S #(S #(S	SYSCLK_PERIOD * 10 : NSYSRESET = 1'b1; NSYSRESET = 1'b1; NSYSRESET = 1'b0; VSYSCLK_PERIOD * 50 : VSYSCLK_PERIOD * 50 : VYSCLK_PERIOD * 50 :)) pulse =) pulse =	= 1; H = 1; H	2V_OUT = 149 2V_OUT = 149	98; #(SY 97; #(SY	SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls
1_0 begin tion begi	14997	15001 1499 14975 1496		15000 14963	14995 14968			begin #(S #(S #(S #(S #(S #(S #(S)	YYSCLK_PERIOD * 10) NSYSRESET = 1'b1; YYSCLK_PERIOD * 10) NSYSRESET = 1'b0; YYSCLK_PERIOD * 50) YYSCLK_PERIOD * 50) YYSCLK_PERIOD * 50)) pulse =) pulse =) pulse =) pulse =	= 1; H = 1; H = 1; H	PV_OUT = 149 PV_OUT = 149 PV_OUT = 149 PV_OUT = 150	98; #(SY 97; #(SY 001; #(SY	SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls
1_0 begin tion begi 14998 14986 14954	14997 14977 14953	14975 1496 14961 1495	69 14967 58 14954	14963 14956	14968 14953	14997 14961 14946	14992 14964 14952	begin #(S #(S #(S #(S #(S #(S #(S #(S) #(S)	SYSCLK_PERIOD * 10) NSYSRESET = 1'b1; SYSCLK_PERIOD * 10) NSYSRESET = 1'b0; SYSCLK_PERIOD * 50) SYSCLK_PERIOD * 50) SYSCLK_PERIOD * 50) SYSCLK_PERIOD * 50)) pulse =) pulse =) pulse =) pulse =) pulse =	= 1; H = 1; H = 1; H = 1; H	2V_OUT = 149 2V_OUT = 149 2V_OUT = 150 2V_OUT = 150 2V_OUT = 149	98; #(SY 97; #(SY 01; #(SY 96; #(SY	SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls
1_0 begin tion begi 14998 14986	14997 14977 14953 14962	14975 1496	69 14967 58 14954 62 14966	14963	14968	14997 14961	14992 14964	begin #(S #(S #(S #(S #(S #(S #(S #(S #(S) #(S)	SYSCLK_PERIOD * 10 ; NSYSRESET = 1'b1; NSYSRESET = 1'b0; NSYSRESET = 1'b0; SYSCLK_PERIOD * 50 ; YSCLK_PERIOD * 50 ; SYSCLK_PERIOD * 50 ; YSCLK_PERIOD * 50 ;) pulse =) pulse =) pulse =) pulse =) pulse =) pulse =	1; H 1; H 1; H 1; H	2V_OUT = 149 2V_OUT = 149 2V_OUT = 150 2V_OUT = 149 2V_OUT = 149 2V_OUT = 150	998; #(SY 97; #(SY 001; #(SY 996; #(SY 000; #(SY	SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls SCLK_PERIOD / 2.0) puls

3.3 FBD Simulator



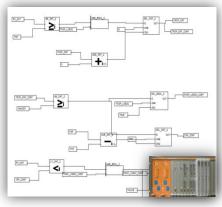
- The '*FBD Simulator*' works in two modes.
 - This FBD Simulator executes one scenario and visualizes the results in a form of graphical chart.
 - It support a verification of functionality of FBD.

3.4 FBD-Verilog Comparator

 Automatic comparison between FBD simulation and Verilog simulation results.

KU KONKUK

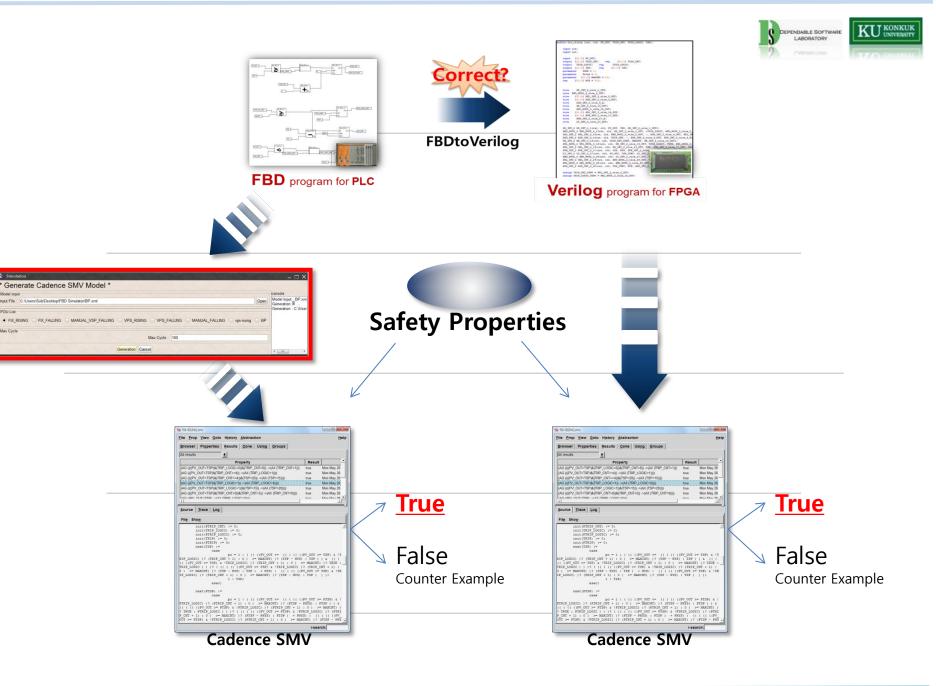
DEPENDABLE SOFTWARE LABORATORY


- 1. The Safety Demonstration
- 2. The Correctness Demonstration

4. CASE STUDY

4. Case Study

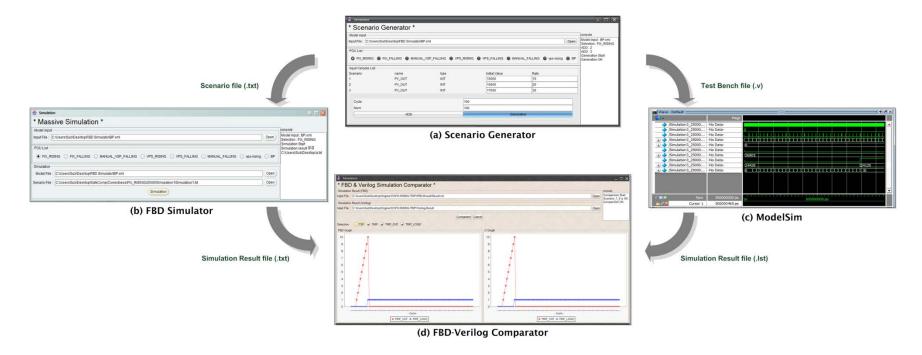
KNIC project RPS (Reactor Protection System) BP (Bistable Process)



	clk:
angrac	
input	[31:0] PV_OUT;
output	[31:0] TRIP_CNT; reg [31:0] TRIP_CNT;
output	TRIP_LOGIC; reg TRIP_LOGIC;
output	[31:0] TSP; reg [31:0] TSP;
parame	ter TRUE = 1;
parame	ter false = 0;
parame	ter [31:0] MAXCNT = 30;
reg	[31:0] HYS = 300;
wire	GE_INT_2_wire_1_OUT;
	AND_BOOL_2_wire_2_OUT;
wire	[31:0] SEL_INT_2_wire_3_OUT;
	[31:0] ADD_INT_2_wire_4_OUT;
wire	ADD_INT_2_wire_4_E;
wire	
wire	
	[31:0] SEL_INT_2_wire_16_OUT;
	[31:0] SUB_INT_2_wire_17_OUT;
wire	
wire	LT_INT_2_wire_27_OUT;
CF INT	2 GE INT 2 1(rst. clk. PV CUT. TSP. GE INT 2 wire 1 CUT);
	OL 2 AND BOOL 2 2(rst, clk, GE INT 2 wire 1 OUT, ~TRIP LOGIC, AND BOOL 2 wire
	T 2 SEL INT 2 3(rst, clk, AND BOOL 2 wire 2 OUT, 0, ADD INT 2 wire 4 OUT, SEL
	T_2 ADD INT_2 4(rst, clk, TRIP_CNT, 1, ADD_INT_2 wire 4_OUT, ADD_INT_2 wire 4
	2 GE INT 2 14 (rst, clk, TRIP_CNT_CONT, MAXCNT, GE INT 2 wire 14 OUT);
	OL 2 SEL BOOL 2 15 (rst, clk, GE INT 2 wire 14 OUT, TRIP LOGIC, TRUE, SEL BOOL
	T 2 SEL INT 2 16(rst, clk, GE INT 2 wire 14 OUT, TSP, SUB INT 2 wire 17 OUT,
	T_2 SUB_INT_2 17(rst, clk, TSP, HYS, SUB_INT_2 wire
	2 LT_INT 2_27 (rst, clk, FV_OUT, TSP_CONT, LT_INT 2
	OL 2 AND BOOL 2 28(rst, clk, LT INT 2 wire 27 OUT, 1
	T 2 SEL INT 2 29 (rst, clk, AND BOOL 2 wire 28 OUT, 1
	OL 2 SEL BOOL 2 30 (rst, clk, AND BOOL 2 wire 28 OUT,
	T_2 ADD_INT_2_31(rst, clk, TSP_CONT, HYS, ADD_INT_2
	TRIP CNT CONT = SEL INI 2 Mire 3 OUT;
a set on	ANAL COM COM - DAN ANA & PARK C CON
	TRIP LOGIC CONT = SEL BOOL 2 wire 15 OUT;

4.1 The Safety Demonstration (G3)

- We performed **model checking** with the **Cadence SMV**
- We developed 28 safety properties with assistant from domain exports and referable papers.
- Ex)
 - "If PV_OUT (An input sensor value) is more than the TSP (Trip Set-Point) for a predefined time, then the trip signal should be fired (TRIP_LOGIC = 1) immediately."
 - : AG((PV_OUT > TSP) & (TRIP_CNT > = (MAXCNT 1)) → AX(TRIP_LOGIC = 1))


Max Cycle

Browser	View Goto Properties				Groups			Help	
All results		±				1			
	,	Pro	perty			Resu	it		
(AG (((PV_0)) (AG (((PV_0))) (AG (((PV_0))) (AG ((((PV_0)))) (AG ((((PV_0)))))	OUT>TSP)&(TRIF OUT>TSP)&(TRI OUT <tsp)&(trif OUT<tsp)&(trif< th=""><th>P_CNT>=4)) P_CNT>=4)) P_LOGIC=1) P_LOGIC=1) P_CNT>0))&</th><th>->(AX (TRIF &(TSP=20)) ->(AX (TRI))&(TSP=15 (TRIP_CNT</th><th>P_LOGIC) ->(AX (1 P_LOGIC -)) ->(AX</th><th>TSP=15)))) C=0))))</th><th>true true true true</th><th>Mon May Mon May Mon May Mon May Mon May Mon May</th><th>26 26 26 26 26 26</th><th></th></tsp)&(trif<></tsp)&(trif 	P_CNT>=4)) P_CNT>=4)) P_LOGIC=1) P_LOGIC=1) P_CNT>0))&	->(AX (TRIF &(TSP=20)) ->(AX (TRI))&(TSP=15 (TRIP_CNT	P_LOGIC) ->(AX (1 P_LOGIC -)) ->(AX	TSP=15)))) C=0))))	true true true true	Mon May Mon May Mon May Mon May Mon May Mon May	26 26 26 26 26 26	
Source	Trace Log					<u></u>			
Fil <u>e</u> Model chee (AG ((((P	cking result	= TRIP_LOGI			I=0)) ->(AX (and the second second second	Contraction of the second	
File Model chee (AG ((()PV (AG ()()PV (AG ()()PV	Cking result OUT>TSP)&(OUT>TSP)&(T V_OUT>TSP)&(T V_OUT <tsp)&(t V_OUT<tsp)&(V_OUT<tsp)&(V_OUT<tsp)&(V_OUT>TSP)&(V_OUT>PTSP)&(V_OUT>PTSP)&(V_OUT>PTSP)&(V_OUT>PTSP)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&(V_OUT<ptsp)&< td=""><td>= TRIP_LOGI RIP_CNT>= TRIP_LOGIC TRIP_LOGI TRIP_CNT> AX (TRIP_ (PTRIP_CNT (PTRIP_CNT (PTRIP_CNT PTRIP_LOG (PTRIP_LOG (PTRIP_CN</td><td>4)) -> (A =4)) & (TS =1)) -> (; C=1)) & (T 0)) & (TRI LOGIC=0) GIC=0)) & >=4)) -> T>=4)) & (IC=1)) - GIC=1)) & T>0)) & (P'</td><td>X (TRI) P=20)) AX (TR: SP=15)) P_CNT<!--<br-->)))) (PTRIP (AX (P PTSP=10 >(AX (1 (PTSP=10)) (AX (1)) (PTSP=10))</td><td>T=0)) ->(AX (P_LOGIC=1)))) ->(AX (TSP=1 IP_LOGIC=0)))) ->(AX (TSP= 5)) ->(AX (TR </td><td>- (0)))) P_CNT=0))) ((PTRIP_CN)) (P=5)))) (P=10)))) PTRIP_CNT=</td><td>t. t.)t. T=t. t. t. t. t. t.</td><td>rue rue rue rue rue rue rue rue rue rue </td><td></td></ptsp)&<></ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</ptsp)&(</tsp)&(</tsp)&(</tsp)&(</tsp)&(t 	= TRIP_LOGI RIP_CNT>= TRIP_LOGIC TRIP_LOGI TRIP_CNT> AX (TRIP_ (PTRIP_CNT (PTRIP_CNT (PTRIP_CNT PTRIP_LOG (PTRIP_LOG (PTRIP_CN	4)) -> (A =4)) & (TS =1)) -> (; C=1)) & (T 0)) & (TRI LOGIC=0) GIC=0)) & >=4)) -> T>=4)) & (IC=1)) - GIC=1)) & T>0)) & (P'	X (TRI) P=20)) AX (TR: SP=15)) P_CNT <br)))) (PTRIP (AX (P PTSP=10 >(AX (1 (PTSP=10)) (AX (1)) (PTSP=10))	T=0)) ->(AX (P_LOGIC=1)))) ->(AX (TSP=1 IP_LOGIC=0)))) ->(AX (TSP= 5)) ->(AX (TR 	- (0)))) P_CNT=0))) ((PTRIP_CN)) (P=5)))) (P=10)))) PTRIP_CNT=	t. t.)t. T=t. t. t. t. t. t.	rue rue rue rue rue rue rue rue rue rue	

4.2 The Correctness Demonstration (G4)

• We performed **co-simulation** with co-simulation environment.

Co-Simulation Environment

4.2 The Correctness Demonstration (G4)

Name of Logic	Scenarios	Initial Values	Rate of Change	Cycles
FIX- RISING	10,000	27,000 - 28,000 (Stepwise: 100)	10 - 100 (Stepwise: 10)	100
FIX- FALLING	10,000	12,000 - 13,000 (Stepwise: 100)	10 - 100 (Stepwise: 10)	100

5. CONCLUSION AND FUTURE WORK

5. Conclusion

- This paper proposed an indirect strategy for demonstrating the safety and correctness of the 'FBDtoVerilog' translator.
- We used the **safety case technique and GSN** to explain the proposed strategy more precisely and systematically.
- We also **developed several CASE tools** to support for deriving evidences.
 - *FBDtoCadenceSMV*; *Scenario Generator*; *FBD Simulator* and
 FBD-Verilog Comparator.
- We then **performed a case** study with an FBD program of the **KNICS APR-1400 RPS BP** in order to demonstrate the safety and correctness of the '*FBDtoVerilog*,' indirectly, according to the demonstration strategy proposed.

Future work

- We are now trying to increase the confidence and thoroughness of the 'Scenario Generator'.
- We are also planning to apply to other translators which we developed, such as 'FBDtoC' and 'NuSCRtoFBD'.
- We expect to extend the proposed techniques into a safety and correctness demonstration framework for general translators and compilers.

Thank you for your attention ...

Contact : atang34@konkuk.ac.kr (Eui-Sub Kim)